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Coaxial shells or cylinders containing fluid have been widely used as structural
components in various applications. Several previous investigations have been performed
to analyze the free vibration of fluid-filled, coaxial cylindrical shells. However, previous
theories were limited to the approximated methods and could provide only the in-phase
and out-of-phase modes of coaxial shells with small annular fluid gap compared to the shell
diameters. Therefore, the previous theories can only be applicable to the low axial and
circumferential modes of coaxial shells with small annular fluid gap. Practically, there exist
many ambiguous vibrational modes in addition to the in-phase and out-of-phase modes.
In this paper, an advanced general theory is developed which calculates the natural
frequencies for all vibrational modes of two coaxial circular cylindrical shells coupled with
fluid. To support the validity of the proposed theory, a finite element modal analysis was
carried out for the clamped/clamped boundary condition. Excellent agreement was
obtained between the analytical solution and the finite element analysis.
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1. INTRODUCTION

The free vibration characteristics of fluid-filled coaxial cylindrical shells have been of great
concern in the design of reactor internal structures subjected to seismic loadings. Hence,
many investigations in this area have been carried out. An analysis of the free vibration
of two infinitely long, coaxial cylinders containing fluid has been published by Krajcinovic
[1] who separated the fluid loading effect on the cylinders into two terms. The first term
is a virtual mass, independent of the flexibility of the other cylinder; the second is a
coupling coefficient which is dependent on the flexibility of both cylinders. The author
proceeded to solve the equation of motion directly for the coupled natural frequencies,
using shell equations for infinitely long cylinders. Chen and Rosenberg [2] derived a
frequency equation for two concentrically located circular cylindrical shells containing and
separated by incompressible fluid and obtained an approximate closed-form solution.
Au-Yang [3] treated the internal structure of a pressurized water reactor as a system of
finite coaxial cylinders immersed in a fluid. He estimated the virtual mass and coupling
coefficient of two finite cylinders with different lengths immersed in fluid, using the simply
supported boundary condition. Finite element methods and experimental investigations of
the free vibrational behaviour of coaxial cylinders were conducted by Chiba and
Kobayashi [4]. Tani et al. [5] performed the free vibration of clamped coaxial cylindrical
shells partially filled with incompressible and inviscid liquid. The theoretical analyses were
based upon the Galerkin method and the velocity potential theory. Yoshikawa et al. [6]
studied the vibrational characteristics of a point-driven two concentric submerged
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cylindrical shells, coupled by entrained fluid. The theory on the double shells was based
on Flügge’s infinite-shell equations. The several complex mixed vibrational modes in the
experimental study were reported by Kim et al. [7]. However, the incompressible fluid was
considered in these theoretical studies, and few theoretical studies on the mixed vibrational
modes were taken into consideration. Therefore, this paper attempts to develop an
analytical method which calculates the coupled natural frequencies for all vibrational
modes of two coaxial cylindrical shells with a fluid-filled annular gap. The clamped
boundary condition at both ends of the concentric shells is considered. However, the
theory can be extended to any arbitrary classical boundary conditions using an additional
simple formulation. This analytical method was verified by FEM.

2. THEORETICAL BACKGROUND

2.1.          



Consider fluid-filled coaxial double cylindrical shells with a clamped boundary condition
at both ends, as illustrated in Figure 1. The cylindrical shells have mean radii R1 and R2,
height L, and wall thickness h. The Sanders’ shell equations [8, 9] as the governing
equations for both shells where the hydrodynamic effects are considered, can be written
as:

R2
j uj,xx +

(1− m)
2 01+

kj

41uj,uu +Rj6(1+ m)
2

−
3(1− m)

8
kj7vj,xu + mRjwj,x

+
(1− m)

2
Rjkjwj,xuu = g2

j uj,tt , (1a)

Figure 1. Coaxial cylindrical shells filled with compressible fluid.
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Rj6(1+ m)
2

−
3(1− m)

8
kj7uj,xu +(1+ kj )vj,uu +

(1− m)
2

R2
j 01+

9kj

4 1vj,xx

−
(3− m)

2
R2

j kjwj,xxu +wj,u − kjwj,uuu = g2
j vj,tt , (1b)

(1− m)
2

Rjkjuj,xuu + mRjuj,x −
(3− m)

2
R2

j kjvj,xxu + vj,u +wj + kj (R4
j wj,xxxx +2R2

j wj,xxuu

+wj,uuuu − vj,uuu )=−g2
j wj,tt +$R2

j pj

D %, (1c)

where the inner shell is referred to with a subscript ‘‘1’’ while the outer shell is denoted
by a subscript ‘‘2’’. The comma in the equations denotes a partial derivative with respect
to the corresponding variable. For a complete description of the motions of the two
concentric cylindrical shells, it is necessary to add boundary conditions to the equations
of motion. Consider the simplest end arrangements of the shells on the top and bottom
supports. At both ends of two such concentrically arranged shells, the boundary conditions
will obviously hold:

Mx1(0)=Nx1(0)= v1(0)=w1(0)=0 for the bottom support of the inner shell, (2a)

Mx1(L)=Nx1(L)= v1(L)=w1(L)=0 for the top support of the inner shell, (2b)

Mx2(0)=Nx2(0)= v2(0)=w2(0)=0 for the bottom support of the outer shell, (2c)

Mx2(L)=Nx2(L)= v2(L)=w2(L)=0 for the top support of the outer shell, (2d)

where Nxj and Mxj denote the membrane tensile force and bending moment, respectively.
All geometric boundary conditions applicable to the clamped–clamped shells can be
reduced to the following equations at the ends of the inner and outer shells:

v1(0)=w1(0)= v2(0)=w2(0)=0, (3a)

v1(L)=w1(L)= v2(L)=w2(L)=0. (3b)

The relationships between the forces and displacements are

Nxj =D$uj,x +
m

Rj
vj,u +

m

Rj
wj%, (4a)

Nxuj =
D(1− m)

2 $ 1
Rj

(1− 3
4kj )uj,u +(1+ 9

4kj )vj,x −3kjwj,xu%, (4b)
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Qxj =K$−(1− m)
2R3

j
uj,uu +

(3− m)
2R2

j
vj,xu −

(2− m)
R2

j
wj,xuu −wj,xxx%, (4c)

Mxj =K$ m

R2
j
(vj,u −wj,uu )−wj,xx%, (4d)

where D=Eh/(1− m2), K=Eh3/12(1− m2), kj = h2/12R2
j and Nxuj , Qxj denote the

membrane shear force and transverse shear force, respectively.

2.2.  

A general relation for the displacements in any mode of free vibration can be written
in the following form for the inner shell j=1 and the outer shell j=2;

uj (x, u, t)= uj (x, u) exp (ivt) , (5a)

vj (x, u, t)= vj (x, u) exp (ivt), (5b)

wj (x, u, t)=wj (x, u) exp (ivt), j=1, 2 (5c)

where u1(x, u), v1(x, u), w1(x, u), u2(x, u), v2(x, u) and w2(x, u) are modal functions
corresponding to the axial, tangential, and radial displacements for the inner and outer
shells, respectively. These modal functions along the axial direction can be described by
a sum of linear combinations of the Fourier series that are orthogonal.

uj (x, u)= s
a

n=1

s
a

m=1

Amnj sin 0mpx
L 1 cos nu, (6a)

vj (x, u)= s
a

n=1 6Bonj + s
a

m=1

Bmnj cos 0mpx
L 17 sin nu, (6b)

wj (x, u)= s
a

n=1 6Conj + s
a

m=1

Cmnj cos 0mpx
L 17 cos nu, j=1, 2. (6c)

The modal functions and their derivatives for each shell can be obtained using the finite
Fourier transform [9]. The modal functions and their derivatives of the shell are described
in reference [8].

2.3.    

The inviscid, irrotational and compressible fluid movement due to shell vibration is
described by the general velocity potential equation:

F,rr +
1
r

F,r +
1
r2 F,uu +F,xx =

1
c2 F,tt , (7)
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where c is the speed of sound in the fluid medium equal to zB/ro, B is the bulk modulus
of elasticity of fluid and ro stands for the fluid density. It is possible to separate the function
F with respect to x by observing that, in the axial direction, the rigid surfaces support the
edges of the shells; thus

F(x, r, u, t)= ivf(r, u, x) exp (ivt)= ivh(r, u)f(x) exp (ivt), i=z−1, (8)

where v is the coupled frequency of the shells. Substitution of equation (8) into the partial
differential equation (7) gives

$h(r, u),rr +
1
r

h(r, u),r +
1
r2 h(r, u),uu +0vc1

2

h(r, u)%
h(r, u)

=−
f(x),xx

f(x)
=0mp

L 1
2

. (9)

It is possible to solve the partial differential equation (9) by the separation of the variables
technique,

f(x, u, r)= s
a

n=1

Don1Jn0vc1+Don2Yn0vc r1
+ s

a

m=1

[Dmn1In (amnr)+Dmn2Kn (amnr)] cos 0mpx
L 1

sin nu,G
G

G

K

k

G
G

G

L

l

for
mp

L
ev

c
(10a)

and

f(x, u, r)= s
a

n=1

Don1Jn0vc r1+Don2Yn0vc r1
+ s

a

m=1

[Dmn1Jn (amnr)+Dmn2Yn (amnr)] cos 0mpx
L 1

sin nu,G
G

G

K

k

G
G

G

L

l

for
mp

L
Qv

c
, (10b)

where Jn and Yn are Bessel functions of the first and second kinds of order n, whereas In

and Kn are modified Bessel functions of the first and second kinds of order n. f means
the spacial velocity potential for the contained fluid and amn is related to the speed of sound
in the fluid medium.

amn =Xb0mp

L 1
2

−0vc1
2

b, for m=1, 2, 3, . . . . (11)
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The boundary conditions of velocity potential f appear as follows:

(1) impermeable rigid surfaces on the bottom

f(0, u, r),x =0; (12)

(2) as there exists no free surface, the axial velocity of fluid at the rigid shell top is also
zero, so

f(L, u, r),x =0; (13)

(3) the radial fluid velocity along the outer wetted surface of the inner shell must be
identical to the radial velocity of the flexible shell, so

f(x, u, R1),r =w1(x, u); (14)

(4) the radial fluid velocity along the inner wetted surface of the outer shell must be
identical to the radial velocity of the shell, so

f(x, u, R2),r =w2(x, u). (15)

Substituting equation (6c), (10a) and (10b) into equations (14) and (15) gives the
relationships, not only between Conj and Donj , but also Cmnj and Dmnj :

s
a

n=1

0vc1Don1J'n0vc R11+0vc1Don2Y'n0vc R11
+ s

a

m=1 6amn [Dmn1I'n (amnR1)+Dmn2K'n (amnR1)] cos 0mpx
L 17

cos nuG
G

G

K

k

G
G

G

L

l

= s
a

n=1 $Con1 + s
a

m=1

Cmn1 cos 0mpx
L 1% cos nu, for

mp

L
ev

c
, (16a)

s
a

n=1

0vc1Don1J'n0vc R21+0vc1Don2Y'n0vc R21
+ s

a

m=1 6amn [Dmn1I'n (amnR2)+Dmn2K'n (amnR2)] cos 0mpx
L 17

cos nuG
G

G

K

k

G
G

G

L

l

= s
a

n=1 $Con2 + s
a

m=1

Cmn2 cos 0mpx
L 1% cos nu, for

mp

L
ev

c
, (16b)
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Now, equation (16) will be reduced to

J'n0vc R11 Y'n0vc R11
G
G

G

G

G

K

k

G
G

G

G

G

L

l
0vc1

J'n0vc R21 Y'n0vc R21
6Don1

Don27=6Con1

Con27 , (17a)

amn$I'n (amnR1)
I'n (amnR2)

K'n (amnR1)
K'n (amnR2)%6Dmn1

Dmn27=6Cmn1

Cmn27. (17b)

When mp/LQv/c, I'n ( ) and K'n ( ) in equations (16a), (16b) and (17b) should be replaced
by J'n ( ) and Y'n ( ), respectively. When the hydrostatic pressures on the shells are neglected,
the hydrodynamic pressures along the inner and outer wetted shell surfaces can be given
by

pj (x, u, t)= djrov
2f(x, u, Rj ) exp (ivt), (18)

where dj =1 for j=1 and dj =−1 for j=2. Finally, the hydrodynamic forces on the inner
and outer shells can be written as

R2
j pj (x, u, t)

D
=

rov
2R2

j dj

D
s
a

n=1 6Con1Gonj +Con2Gonj

+ s
a

m=1

[Cmn1Gmnj +Cmn2Gmnj ] cos 0mpx
L 17 sin nu exp (ivt). (19)

2.4.  

The dynamic displacements and their derivatives may be represented by a Fourier sine
and cosine series in an open range of 0Q xQL and with the end values using the finite
Fourier transform [8]. Substitution of the displacements and their derivatives into the
governing Sanders’ shell equations (1a), (1b) and (1c), leads to an explicit relation for Bonj ,
Conj , and a set of equations for Amnj , Bmnj , Cmnj , as follows:

Bonj = q1j (uo
j + uL

j )+ q2j (ṽo
j + ṽL

j )+ q3j (w̃o
j + w̃L

j )+ q4j (w� o
j +w� L

j ), (20)

Conj = q5j (uo
j + uL

j )+ q6j (ṽo
j + ṽL

j )+ q7j (w̃o
j + w̃L

j )+ q8j (w� o
j +w� L

j ), (21)
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d 4
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1
m
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+

(−
1)

m
uL 1

]

a 1
2
[u

o 1
+

(−
1)

m
uL 1

]+
a 1

3
[ṽ

o 1
+

(−
1)

m
ṽL 1

]+
a 1

4
[w̃

o 1
+

(−
1)

m
w̃

L 1
]

a 1
5
[u

o 1
+

(−
1)

m
uL 1

]+
a 1

4
[ṽ

o 1
+

(−
1)

m
ṽL 1

]+
a 1

8
[w̃

o 1
+

(−
1)

m
w̃

L 1
]+

a 1
9
[w
�o 1

+
(−

1)
m
w�L 1

−
m

2 w̃
o 1
−

m
2 (
−

1)
m
w̃

L 1
]
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2)

GG GG GG GK k

GG GG GG GL l

=
−

a 2
1
m

[u
o 2
+

(−
1)

m
uL 2

]

a 2
2
[u

o 2
+

(−
1)

m
uL 2

]+
a 2

3
[ṽ

o 2
+

(−
1)

m
ṽL 2

]+
a 2

4
[w̃

o 2
+

(−
1)

m
w̃

L 2
]

a 2
5
[u

o 2
+

(−
1)

m
uL 2

]+
a 2

4
[ṽ

o 2
+

(−
1)

m
ṽL 2

]+
a 2

8
[w̃

o 2
+

(−
1)

m
w̃

L 2
]+

a 2
9
[w
�o 2

+
(−

1)
m
w�L 2

−
m

2 w̃
o 2
−

m
2 (
−

1)
m
w̃

L 2
]
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where the end values in equation (20)–(22) are defined as

uo
j =−

2uj (0, u)
p cos nu

, uL
j =

2uj (L, u)
p cos nu

, ṽo
j =−

2Lvj,x (0, u)
p2 sin nu

, ṽL
j =

2Lvj,x (L, u)
p2 sin nu

,

w̃o
j =−

2Lwj,x (0, u)
p2 cos nu

, w̃L
j =

2Lwj,x (L, u)
p2 cos nu

, w� o
j =−

2L3wj,xxx (0, u)
p4 cos nu

,

w� L
j =

2L3wj,xxx (L, u)
p4 cos nu

. (23)

The equivalent hydrodynamic mass effect on the inner shell is included in the coefficient
d33, and the effect on the outer shell is contained in the coefficient d66. The coefficient d36

indicates the equivalent hydraulic pressure on the inner shell induced by the outer shell
motion, and similarly d63 stands for the equivalent hydraulic pressure on the outer shell
induced by the inner shell motion. Generally speaking, the coefficient d36 $ d63. Therefore
the matrix equation (22) is asymmetric. The matrix equation is coupled by two coefficient
terms d36 and d63.

The forces Nxuj and Qxj at the ends of the shells can be written as a combination of some
boundary values of displacement and their derivatives using equation (3).

Nxuj (0, u)= [f1juo
j + f2j ṽo

j + f3jw̃o
j ] sin nu, (24a)

Nxuj (L, u)=−[f1juL
j + f2j ṽL

j + f3jw̃L
j ] sin nu, (24b)

Qxj (0, u)= [f4juo
j + f5j ṽo

j + f6jw̃o
j + f7jw� o

j ] cos nu, (24c)

Qxj (L, u)=−[f4juL
j + f5j ṽL

j + f6jw̃L
j + f7jw� L

j ] cos nu, (24d)

where fij (i=1, 2, . . . , 7, j=1, 2) are the derived coefficients. The boundary values of
displacement and their derivatives, ṽo

j , ṽL
j , w� o

j and w� L
j can be transformed in a combination

of the boundary values of uj , w̃j , Nxuj and Qxj by equation (4), as written in the form

ṽo
j =[g1juo

j + g2jw̃o
j + g3jNxuo

j
], (25a)

ṽL
j =[g1juL

j + g2jw̃L
j + g3jNxuL

j
], (25b)

w� o
j =[g4juo

j + g5jw̃o
j + g6jNxuo

j
+ g7jQxo

j
], (25c)

w� L
j =[g4juL

j + g5jw̃L
j + g6jNxuL

j
+ g7jQxL

j
], (25d)

where

Nxuo
j
=

Nxuj (0, u)
sin nu

, NxuL
j
=−

Nxuj (L, u)
sin nu

, Qxo
j
=

Qxj (0, u)
cos nu

,

QxL
j
=−

Qxj (L, u)
cos nu

, (26)

gij (i=1, 2, . . . , 7, j=1, 2) can also be derived.
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Substitution of equation (25) into equations (20), (21) and (22) gives

Bon1 = s
2

j=1

[b1j (uo
j + uL

j )+ b2j (w̃o
j + w̃L

j )+ b3j (Nxuo
j
+NxuL

j
)+ b4j (Qxo

j
+QxL

j
)],

(27a)

Bon2 = s
2

j=1

[b5j (uo
j + uL

j )+ b6j (w̃o
j + w̃L

j )+ b7j (Nxuo
j
+NxuL

j
)+ b8j (Qxo

j
+QxL

j
)],

(27b)

Con1 = s
2

j=1

[d1j (uo
j + uL

j )+ d2j (w̃o
j + w̃L

j )+ d3j (Nxuo
j
+NxuL

j
)+ d4j (Qxo

j
+QxL

j
)]

(27c)

Con2 = s
2

j=1

[d5j (uo
j + uL

j )+ d6j (w̃o
j + w̃L

j )+ d7j (Nxuo
j
+NxuL

j
)+ d8j (Qxo

j
+QxL

j
)],

(27d)

{uo
1 + (−1)muL

1 }

Amn1 {uo
2 + (−1)muL

2 }

Bmn1 {w̃o
1 + (−1)mw̃L

1 }

Cmn1 {w̃o
2 + (−1)mw̃L

2 }G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

Amn2

= [z]
{Nxuo

1
+ (−1)mNxuL

1
}

, (28)

Bmn2 {Nxuo
2
+ (−1)mNxuL

2
}

Cmn2 {Qxo
1
+ (−1)mQxL

1
}

{Qxo
2
+ (−1)mQxL

2
}

where bij and dij in equation (27) are the derived coefficients, and [z] in equation (28) is
the 8×6 derived coefficients matrix. Eventually, all Fourier coefficients Amnj , Bmnj and Cmnj

are rearranged with a combination of the end point values, as shown in equation (28).
The geometric boundary conditions that must be satisfied are associated with

displacements vj and wj . Hence, it follows that

v1(0)= s
a

n=1 $Bon1 + s
a

m=1

Bmn1%=0, v1(L)= s
a

n=1 $Bon1 + s
a

m=1

Bmn1(−1)m%=0,

(29a, b)

v2(0)= s
a

n=1 $Bon2 + s
a

m=1

Bmn2%=0, v2(L)= s
a

n=1 $Bon2 + s
a

m=1

Bmn2(−1)m%=0,

(29c, d)
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w1(0)= s
a

n=1 $Con1 + s
a

m=1

Cmn1%=0, w1(L)= s
a

n=1 $Con1 + s
a

m=1

Cmn1(−1)m%=0,

(29e, f)

w2(0)= s
a

n=1 $Con2 + s
a

m=1

Cmn2%=0, w2(L)= s
a

n=1 $Con2 + s
a

m=1

Cmn2(−1)m%=0.

(29g, h)

Substitution of equations (27) and (28) for the coefficients Bonj , Conj , Amnj , Bmnj and Cmnj into
the eight constraint conditions which come from the geometric boundary condition,
written as equation (29), leads to a homogeneous matrix equation:

e11 e12 e13 e14 e15 e16 e17 e18 c11 c12 c13 c14 c15 c16 c17 c18

e12 e11 e14 e13 e16 e15 e18 e17 c12 c11 c14 c13 c16 c15 c18 c17

e21 e22 e23 e24 e25 e26 e27 e28 c21 c22 c23 c24 c25 c26 c27 c28

e22 e21 e24 e23 e26 e25 e28 e27 c22 c21 c24 c23 c26 c25 c28 c27

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

e31 e32 e33 e34 e35 e36 e37 e38 c31 c32 c33 c34 c35 c36 c37 c38

e32 e31 e34 e33 e36 e35 e38 e37 c32 c31 c34 c33 c36 c35 c38 c37

e41 e42 e43 e44 e45 e46 e47 e48 c41 c42 c43 c44 c45 c46 c47 c48

e42 e41 e44 e43 e46 e45 e48 e47 c42 c41 c44 c43 c46 c45 c48 c47

× [H]= {0}, (30)

[H]= [uo
1 uL

1 uo
2 uL

2 w̃L
1 w̃L

1 w̃o
2 w̃L

2 Nxuo
1

NxuL
1

Nxuo
2

NxuL
2

Qxo
1

QxL
1

Qxo
2

QxL
2
]T . (31)

The elements of the matrix, eik and cik (i=1, 2, . . . , 4 and k=1, 2, . . . , 8) can be obtained
from equation (29). However, when both cylindrical shells are clamped at both support
ends, the associated boundary conditions are

uj =0, vj =0, wj =0, wj,x =0 at x=0 and L. (32)

Among these boundary conditions, the two geometric boundary conditions u1 =0, u2 =0,
w̃1 =0 and w̃2 =0 at x=0 and x=L are not automatically satisfied by equation (5), the
modal functions set. Therefore the first, second, third, and fourth rows of the matrix in
equation (30) are enforced and the terms associated with uo

j , uL
j , w̃o

j and w̃L
j are released.

The 8×8 frequency determinant is obtained from equation (30) by retaining the rows and
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columns associated with Nxuo
j
, NxuL

j
, Qxo

j
and QxL

j
. For the clamped boundary condition, the

coupled natural frequencies are numerically obtained from the frequency determinant:

c11 c12 c13 c14 c15 c16 c17 c18

c12 c11 c14 c13 c16 c15 c18 c17

c21 c22 c23 c24 c25 c26 c27 c28

c22 c21 c24 c23 c26 c25 c28 c27

G
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

c31 c32 c33 c34 c35 c36 c37 c38
=0. (33)

c32 c31 c34 c33 c36 c35 c38 c37

c41 c42 c43 c44 c45 c46 c47 c48

c42 c41 c44 c43 c46 c45 c48 c47

3. EXAMPLE AND DISCUSSION

3.1. FEM    

On the basis of the preceding analysis, the frequency determinant is numerically solved
for the clamped boundary condition in order to find the coupled natural frequencies of
the coaxial double cylindrical shells filled with bounded compressible fluid. The inner and
outer shells are coupled with a fluid-filled annular gap. In order to check the validity and
accuracy of the results from the theoretical study and compare them to the FEM result,
computation is carried out for the fluid-coupled system. The inner cylindrical shell has a
mean radius of 100 mm, a length of 300 mm, and a wall thickness of 2 mm. The outer
cylindrical shell has a mean radius of 150 mm with the same length and wall thickness.
The physical properties of the shell material are as follows: Young’s modulus=69·0 GPa,
Poisson’s ratio=0·3, and mass density=2700 kg/m3. Water is used as the contained fluid,
having a density of 1000 kg/m3. The sound speed in water, 1483 m/s, is equivalent to the
bulk modulus of elasticity, 2·2 GPa. The clamped boundary condition at both ends of the
two shells is considered.

The frequency equation derived in the preceding section involves an infinite series of
algebraic terms. Before exploring the analytical method to obtain the coupled natural
frequencies of the fluid-coupled shells, it is necessary to conduct convergence studies and
establish the number of terms which are required in the series expansions involved. In the
numerical calculation, the Fourier expansion term m is set at 100, which gives an exact
enough solution by convergence. In general, the solution approaches the exact frequency
from above as the number of terms included in the series increases. However, the use of
more than 100 terms does not improve the solutions significantly. Finite element analyses
using a commercial computer code ANSYS software (version 5.2) are performed to verify
the results of the theoretical study. The FEM results are used as the baseline data. In the
finite elements analysis, two-dimensional axisymmetric models are constructed with
axisymmetric two-dimensional fluid elements (FLUID81) and axisymmetric shell elements
(SHELL61). The fluid region is divided into a number of identical fluid elements with four
nodes. The circular cylindrical shell is modelled as deformable shell elements with two
nodes. The fluid boundary conditions at the top and bottom of the tank are zero
displacement and rotations. The nodes which are connected entirely by the fluid elements
are free to move arbitrarily in three-dimensional space, with the exception of those which
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are restricted to motion in the bottom and top surfaces of the fluid cavity. The radial
velocities of the fluid nodes along the wetted shell surfaces are coincided to the
corresponding velocities of the shells. The FEM model has 320 (radially 8× axially 40)
fluid elements and 80 shell elements. The inner and outer shells each consist of 40 identical
shell elements.

3.2.     

Table 1 will make it easier to check the accuracy of the frequencies and compare the
theoretical frequencies with the corresponding FEM ones. The discrepancy is defined as

Discrepancy(%) =
(frequency obtained by FEM−theoretical frequency)

frequency obtained by FEM
×100. (34)

T 1

Coupled natural frequencies (Hz) of the fluid-filled coaxial shells

Apparent mode Coupled frequency
Serial ZXXCXXV ZXXXXCXXXXV Mode Discrepancy
mode n m' FEM theory phase (%)

1 1 1 392·0 391·1 out-of-phase 0·23
2 1 2 856·6 847·6 out-of-phase 1·05
3 1 3 1417·8 1397·5 out-of-phase 1·43
4 1 1 1735·7 1736·6 in-phase −0·05
5 1 4 1939·1 1908·5 out-of-phase 1·57
6 1 5 2359·8 2317·2 out-of-phase 1·81
7 1 – 2604·2 2623·4 mixed phase −0·74

1 2 1 434·8 435·6 out-of-phase −0·18
2 2 2 909·7 907·1 out-of-phase 0·28
3 2 1 994·1 996·8 in-phase −0·27
4 2 3 1414·6 1401·3 out-of-phase 0·94
5 2 – 1828·0 1822·2 mixed phase 0·32
6 2 – 1911·8 1892·6 mixed phase 1·00
7 2 – 2302·1 2265·3 mixed phase 1·60

1 3 1 402·2 403·0 out-of-phase −0·20
2 3 1 669·2 671·3 in-phase −0·31
3 3 2 858·3 858·3 out-of-phase 0·00
4 3 2 1341·4 1344·8 in-phase −0·25
5 3 3 1359·3 1352·4 out-of-phase 0·51
6 3 4 1829·5 1810·7 out-of-phase 1·03
7 3 3 2012·0 2010·6 in-phase 0·07

1 4 1 382·1 382·5 out-of-phase −0·10
2 4 1 559·9 561·9 in-phase −0·36
3 4 2 790·6 791·0 out-of-phase 0·05
4 4 2 1072·0 1075·5 in-phase −0·32
5 4 3 1271·2 1267·5 out-of-phase 0·29
6 4 3 1674·5 1676·9 in-phase −0·14
7 4 4 1742·2 1729·2 out-of-phase 0·76

1 5 1 385·5 385·6 out-of-phase 0·02
2 5 1 655·4 658·4 in-phase −0·46
3 5 2 748·5 748·5 out-of-phase 0·00
4 5 2 1005·2 1008·9 in-phase −0·37
5 5 3 1194·1 1191·5 out-of-phase 0·22
6 5 3 1512·3 1515·9 in-phase 0·23
7 5 4 1658·0 1648·2 out-of-phase 0·59
8 5 4 2087·9 2086·8 in-phase 0·05
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The largest discrepancies between the theoretical and FEM results are 1·81% for the
circumferential wavenumber, n=1, and the apparent axial mode number, m'=4, and
1·60% for n=2 with the seventh serial mode. Discrepancies defined by equation (34) are
always less than 2% and their root mean square is about 0·7%. As the coarse mesh of
the FEM model changes to fine mesh, all natural frequencies may approach the theoretical
results. As may be seen, the present results agree quite well with FEM solution.

3.3.  

Mode shapes of the fluid-coupled coaxial double shells are obtained by the FEM and
plotted in Figures 2–4. The dashed lines in the figures represent the undeformed shapes
of the two-dimensional cylindrical shells. Figures 2–4 show the deformed mode shapes of
the fluid and shell elements for the circumferential wavenumber n=1, 2 and 3,
respectively. Note that the co-ordinate axial symbols in the figures indicate the axis of the
shells at x=0. In the higher axial mode numbers of the vibrational mode shapes, the
separations between the two-dimensional axisymmetric cylindrical shells and fluid regions
appear because only a radial coupling on the shell–fluid interface is applied in the FEM
simulation. The radial coupling is assured by equations (14) and (15) in the theory.
Practically, in the real fluid, the separations between the shells and fluid regions cannot
appear because of the boundary layer due to fluid damping. However, if the perfect
coupling, including the axial and azimuthal directions, is simulated in the FEM model,
the movement of fluid elements in contact with the shell elements is restricted to the axial
and azimuthal directions. It will not be realistic for the light damping fluid or non-viscous
fluid. The perfect coupling between the shells and the contained fluid in the FEM
simulation can produce some errors which will exaggerate the added mass effect and
underestimate the coupled frequencies. In the FEM simulation model, the slips towards
the axial and azimuthal directions along the surface of the shell–fluid interface should be
preserved instead of the perfect coupling for more realistic physical phenomena. The little
separations between them may not be significant because all the mode shapes in
Figures 2–4 are exaggerated, compared to the vibrational amplitudes of real linear free
vibration. In order to compensate the separation phenomena between the shell and fluid,
the assumption that the radial fluid velocity should be identical to the radial shell velocity
along the fluid-contacting surfaces, must be changed to the realistic physical phenomena.
That is to say, the fluid velocity along the contacting surfaces must always be normal to
the shell surface during vibration. The realistic boundary condition may lead to a
non-linear boundary equation. Eventually it will provide a complex theoretical model. As
the number of the axial and circumferential modes increases, the separation will arise in
a wide range except the anti-nodes and it will overestimate the coupled natural frequencies.

All of the mode shapes can be classified into three mode categories according to the
relative moving directions between the inner and outer shells during vibration: in-phase
mode, out-of-phase mode, and mixed modes. The vibrational mode shapes show some
ambiguous vibrational modes, neither apparent in-phase modes nor apparent out-of-phase
modes, which are now called mixed vibrational modes. When two parallel identical
cylinders are submerged in an ideal fluid, there exist only the in-phase and out-of-phase
vibrational modes, as shown in section 3.2 of reference [10]. On the other hand, as the two
coaxial circular cylindrical shells cannot have the same diameter although they have the
same length, their mode shapes in vacuum cannot be exactly identical. As the two coaxial
circular cylindrical shells vibrate independently in vacuum, they will have different natural
frequencies and mode shapes for the corresponding mode numbers. When the annulus
between the shells is filled with a low-density fluid, they will still maintain the different
natural frequencies and mode shapes by a weak fluid coupling effect. As the fluid density
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Figure 2. Two-dimensional axisymmetric mode shapes for the circumferential wavenumber n=1. (a) First
serial mode (392·0 Hz), m'=1, out-of-phase mode; (b) second serial mode (856·6 Hz), m'=2, out-of-phase
mode; (c) third serial mode (1417·8 Hz), m'=3, out-of-phase mode; (d) fourth serial mode (1735·7 Hz), m'=1,
in-phase mode; (e) sixth serial mode (2359·8 Hz), m'=5, out-of-phase mode; (f) seventh serial mode (2609·2 Hz)
mixed mode.



Y

(b)

Z X

Y

(c)

Z X

Y

(a)

Z X

Y

(e)

Z X

Y

(f)

Z X

Y

(d)

Z X

.-. 120

Figure 3. Two-dimensional axisymmetric mode shapes for the circumferential wavenumber n=2. (a) Second
serial mode (909·7 Hz), m'=2, out-of-phase mode; (b) third serial mode (994·1 Hz), m'=1, in-phase mode; (c)
fourth serial mode (1414·6 Hz), m'=3, out-of-phase mode; (d) fifth serial mode (1828.0 Hz), mixed mode; (e)
sixth serial mode (1911.8 Hz), mixed mode; (f) seventh serial mode (2302.1 Hz), mixed mode.
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Figure 4. Two-dimensional axisymmetric mode shapes for the circumferential wavenumber n=3. (a) First
serial mode (402·2 Hz), m'=1, out-of-phase mode; (b) second serial mode (669.2 Hz), m'=1, in-phase mode;
(c) third serial mode (858·3 Hz), m'=2, out-of-phase mode; (d) fourth serial mode (1341· 4 Hz), m'=2, in-phase
mode; (e) fifth serial mode (1359·3 Hz), m'=3, out-of-phase mode; (f) sixth serial mode (1829·5 Hz), m'=4,
out-of-phase mode.
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increases and the annular gap decreases, the coupling effect of fluid will become strong,
and the in-phase and out-of-phase modes will appear clearly. On the contrary, when the
fluid density decreases or the annular gap increases or the number of modes increases, the
ambiguous mixed modes will appear instead of the in-phase and out-of-phase modes.
Therefore, strictly speaking, the real in-phase and real out-of-phase modes in the coaxial
cylindrical shells coupled with fluid may not exist, but only the serial modes similar to the
in-phase and out-of-phase modes may exist. In the strict sense of the word, these modes
can be called the apparent in-phase or apparent out-of-phase modes. The low fluid density
and the large annular gap in the fluid-coupled system may increase the possibility of the
ambiguous mixed mode appearance in the lower frequency range. From this point of view,
all of the in-phase, out-of-phase and mixed modes can be interpreted as an appearance
of the similar modal pattern from the sequential serial modes.

The first, second and third serial modes of the circumferential mode number n=1 are
typical apparent out-of-phase modes, as shown in Figure 2. The fourth serial mode of
n=1 in Figure 2, third serial mode of n=2 in Figure 3 and fourth mode of n=3 in
Figure 4 are the typical apparent in-phase vibrational modes. The seventh serial mode of
circumferential mode number n=1 in Figure 2 is a mixed vibrational mode which
resembles a mode with the axial mode m'=2 for the inner shell and m'=4 for the outer
shell. The mixed mode shows an influence of the inner shell deformation on the mode shape
of the outer shell. The fifth serial mode of n=2 in Figure 3 is another mixed mode, similar
to the in-phase mode with the axial mode number m'=2. The sixth serial mode of n=2
in Figure 3 is a mixed mode, which resembles an out-of-phase vibrational mode with the
axial mode number m'=3 for the inner shell and m'=4 for the outer shell. The seventh
serial mode for n=2 in Figure 3 is a mixed mode, which maintains the out-of-phase mode
in the top and bottom regions of the shells and keeps the weak in-phase mode in the central
region of the shells. Judging from a review of the vibrational mode shapes, as the axial
mode number or the serial mode number increases, it is found that the mixed vibrational
modes appear frequently. As the circumferential mode number increases, the out-of-phase
and in-phase modes in the serial vibrational modes appear alternatively.

4. CONCLUSIONS

An analytical method to estimate the coupled natural frequencies of coaxial cylindrical
shells filled with compressible fluid in the annular gap is developed using the series
expansion method based on the finite Fourier transform. To clarify the validity of the
analytical method, an example for the clamped cylindrical shells is examined using the
analytical method and finite element method. Complete agreement is found between them,
and the analytical method is verified. All possible natural frequencies of the fluid-filled
coaxial cylindrical shells, not only for the in-phase and out-of-phase modes, but also for
the ambiguous mixed modes, can be obtained.
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APPENDIX: NOMENCLATURE

Amnj Fourier coefficients related to modal function in axial direction
aij derived coefficients in equation (22)
Bmnj Fourier coefficients related to modal function in azimuthal direction
B bulk modulus of elasticity of fluid
c speed of sound in fluid medium
cik derived coefficients in equation (30)
Cmnj Fourier coefficients related to modal function in radial direction
D Eh/(1− m2)
Donj Fourier coefficients related to fluid motion
Dmnj Fourier coefficients related to fluid motion
dij derived coefficients in equation (22)
E Young’s modulus of shells
eik derived coefficients in equation (30)
fij derived coefficients in equation (24)
f(x) spacial velocity potential in axial direction defined in equation (8)
Gonj derived coefficients in equation (19)
Gmnj derived coefficients in equation (19)
gij derived coefficients in equation (25)
i z−1
[H] column matrix defined in equation (31)
h thickness of cylindrical shells
K Eh3/12(1− m2)
kj h2/12R2

j

m Fourier components in axial direction
m' axial mode number
Mxj bending moment per unit length
Nxuj effective membrane shear force per unit length
Nxj membrane force per unit length
n circumferential wavenumber
L height of shells
pj dynamic liquid pressures on the inner and outer shells
Qxj effective transverse shear force per unit length
qij derived coefficients in equations (20) and (21)
r radial co-ordinate
t time
uj axial dynamic displacements of shells
vj tangential dynamic displacements of shells
wj radial dynamic displacements of shells
x axial co-ordinate
amn defined in equation (11)
bij derived coefficients in equations (27a) and (27b)
g2

j rR2
j (1− m2)/E

dj 1 for the subscript j=1 and −1 for j=2 in equations (18) and (19)
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dij derived coefficients in equation (27c) and (27d)
Gonj derived coefficients in equation (19)
Gmnj derived coefficients in equation (19)
[z] derived coefficients in 8×6 matrix equation (28)
h velocity potential function of r and u
u tangential co-ordinate
m Poisson’s ratio
r density of cylindrical shells
ro density of fluid
F general velocity potential function of r, u, x and t
f spacial velocity potential function of r, u and x
v coupled natural frequency


